MICHIGAN MEDICINE

<u>Michigan Pediatric Adolescent</u> <u>Interdisciplinary Network</u>

Desensitization – Does it work for the chronic pain population? Pediatric Rehabilitation Center Presented By: Joe Latocki, OTR/L Michelle DeMarco, OTR/L

What We Will Be Covering:

- Brief overview of the MiPain program
- Quick review of amplified musculoskeletal pain syndrome (AMPS)
- Desensitization key terms
- Current evidence for desensitization and treatment approaches
- Assessments
- Strategies for implementation of a desensitization protocol
- Case study example

MiPain Program

MiPAIN program:

- 4 kids in a group ages 9-21
- 3 days a week: Tuesday, Wednesday, Thursday
- 9am 3pm
- 3 weeks
- 1 session cancelation policy

Occupational therapy frequency:

- 3 sixty minute sessions a week
 - $-\frac{2}{3}$ group of 4 format. $\frac{1}{3}$ group of 2 format.

Pediatric Chronic Pain Epidemiology

International Spine & Pain Institute Session 1 p.11

Pediatric Chronic Pain Epidemiology

Completely changes their life

Key Terms

- Allodynia^[4]:
 - painful response to generally non-painful stimuli
 - example: clothing, bed sheets
- Hyperalgesia^[4]:
 - heightened pain response to generally painful stimuli
 - example: deep pressure, injuries
- Hyperesthesia^[4]:
 - general hypersensitivity to any sensory stimuli

Allodynia vs. Hyperalgesia

(Lolignier, S., Eijkelkamp, N., & Wood, J. N., 2015)

- 15%-50% of all individuals with neuropathic pain, experience allodynia^[16]
- 74% of adult patients with complex regional pain syndrome experience allodynia^[13]
- 76% of children with CRPS experience allodynia^[14]

- The Effectiveness of Desensitization Therapy for Individuals with Complex Regional Pain Syndrome: A Systematic Review^[1]
 - Examined effect of desensitization in patients with CRPS
 - 10 articles included (2001-2013)
 - Types of desensitization:
 - chemical, tactile, thermal, and pressure desensitization
 - tactile was most prevalent
 - 68 patients total
 - Ages: 8-57

- The Effectiveness of Desensitization Therapy for Individuals with Complex Regional Pain Syndrome: A Systematic Review^[1]
 - Only one study examined the effects of tactile desensitization in isolation
 - Outcome measures included:
 - pain, allodynia, and/or function
 - Results:
 - All studies showed support of including desensitization as a part of the treatment approach for CRPS.
 - Supported a graded desensitization approach

• Highlights from literature

- Evidence supporting use of desensitization used in combination with motor tasks for CRPS^[12].
- Patients with increased allodynia tended to have decreased tactile discrimination in the affected area^[3]
- Evidence shows shrinkage of cortical maps on primary somatosensory cortex (SI) on the contralateral side to the limb affected with CRPS. Amount of shrinkage linked to severity of pain^[3]
- Combined graded desensitization and motor tasks led to a decrease in pain, improvement in tactile discrimination, and restoration of cortical maps in patients with UE pain and hypersensitivity due to CRPS^[3].

- Highlights from literature:
 - Graded approach with regards to both the texture used and the motor task performed^{[3][12]}
 - Following desensitization, patient's demonstrated decreased size of allodynic region.^{[2].}
 - Decrease in patient's pain intensity following desensitization protocol^{[2][12]}

Stage 1, participants see a series of photographic flash cards, and are asked to identify (as quickly as possible) whether the depiction is of a left or right limb.

Stage 2, participants imagine moving the affected limb into the position demonstrated on the photograph, while the affected hand rests comfortably.

Stage 3 involves mirror therapy, whereby both limbs are moved to adopt simple postures as demonstrated on the photograph [20]

Moseley GL (2004). Graded motor imagery is effective for long standing complex regional pain syndrome: A randomised controlled trial. Pain 108: 192-198.

"It seems plausible that GMI may provide an avenue to start rehabilitation at a manageable level for a patient who complains that pain is too severe to perform any kind of limb movement." p[19]

Pollard C (2013) Physiotherapy management of complex regional pain syndrome New Zealand Journal of Physiotherapy 41(2): 65-72.

Allodynia Hypersensitivity Scale

- No standardized measure was identified to assess tactile hypersensitivity
- Allodynia and Hypersensitivity Scale was created to meet the needs of the MiPain program.
- Only completed if patient is hypersensitive to tactile stimulation
- Implemented using a standardized protocol
- Overall, data collection shows that patients exit with reduced tactile hypersensitivity.

Allodynia Hypersensitivity Scale

	А	В	C	D	E	F	G	Н	I	J	L
1	NAME	<u>DATE</u>	light touch	deep pressu	brushing	towel rubbin	vibration	cold temper	Repeated st	total	•
2	Patient A	10/24/2017	0	3	1	4	5	4	7	24	
3			0	2	3	2	3	4	4	18	
4	Patient B	10/26/2017	0	0	7	0	7	0	0	14	
5		12/20/2017	0	0	1	0	0	0	0	1	
6	Patient C	11/2/2017	7	9	8	10	0	8	6	48	
7		12/20/2017	0	3	0	2	0	3	3	11	
8		3/22/2018	0	1	0	0	0	0	0	1	
9	Patient D	10/11/2017	0	0	0	0	0	0	0	0	
10											
11	Patient E	10/17/2017	0	2	0	0	0	0	0	2	
12			0	2	0	0	0	0	0	2	
13	Patient F	10/17/2017	1	3	1	2	6	5	7	25	
14		11/30/2017	0	3	1	2	3	4	3	16	
15		1/9/2018	3	2	2	6	6	8	5	32	

Allodynia Hypersensitivity Scale

Allodynia Hypersensitivity Scale findings:

- Based upon change in score from initial evaluation until the end of the MiPain program.
- 30 patients' scores were included
- Average decrease of 10.3 points
- High of 37 point decrease.
- 2 patients scored higher on post-test than pre-test

Standardized Assessment Considerations:

- Two-point discrimination
- Pain perception questionnaires (BATH, etc.)
- Measuring size of pain region
- Pressure gauge

Patient Factors to Consider

- How do we know if the patient is a good candidate for a desensitization protocol?
- Which protocol should you choose?

Strategies for Implementation

- Graded progression based upon patient's tolerance
 - \circ $\,$ variation in textures used
- Used in combination with movement/exercise
- Embedded within functional activities and routines
 - \circ shower
 - dressing (i.e clothing textures)
- Individualized home exercise program
 - at least 1-8 minutes of daily desensitization multiple times a day.
- Involvement of caregivers for improved carryover

- Patient demographics
 - 9 years old
 - Complex regional pain syndrome
 - Left lower extremity pain and hypersensitivity
 - high level athlete
- Initial evaluation:
 - using crutches
 - Allodynia Hypersensitivity Scale: score 56
 - minimal physical activity
 - occasionally missing school or leaving early
 - often avoids washing LLE in shower
 - could not sit with knee flexed at 90 degrees

- Treatment approach:
 - Coordinated outpatient OT, PT, and Psychology
 - Frequency: 2-3x/week
 - Interventions included:
 - movement
 - weight bearing
 - desensitization
 - functional activities
 - mirror visual feedback
 - scheduled decrease in use of crutches

• Self Administered Desensitization included:

- shaving cream
- dry towel
- \circ wet towel
- soft brush
- sensory brush
- textured massage roller
- vibration
- Incorporated mirror visual feedback with these textures on non-affected LE
- Textures were graded up based upon tolerance
- Included both patient and therapist completing desensitization during session

• Outcomes

- Allodynia Hypersensitivity Scale reassessment score: 33
 - Improved by 23 points
- Ambulating without upper extremity support
- Independent with all ADL's
- Increased activity levels

References

[1] Helmers, Lauryn M., Donnelly, Kira L., Verberne, Olivia M., & Allen, Roger J (2015). The Effectiveness of Desensitization Therapy for Individuals with Complex Regional Pain Syndrome: A Systematic Review. *Physical Therapy Research Symposium*. 13. https://soundideas.pugetsound.edu/ptsymposium/13 [2] Lewis, J. S., Coales, K., Hall, J., & Mccabe, C. S. (2011). Now you see it, now you do not: Sensorymotor re-education in complex regional pain syndrome. *Hand Therapy*, 16(2), 29-38. doi:10.1258/ht.2011.011005 [3] Pleger, B., Tegenthoff, M., Ragert, P., Förster, A., Dinse, H. R., Schwenkreis, P., Nicolas, V., & Maier, C. (2005), Sensorimotor returning in complex regional pain syndrome parallels pain reduction. Ann Neurol., 57, 425-429. doi:10.1002/ana.20394 [4] International Association for the Study of Pain. (2018). IASP Terminology. Retrieved from https://www.iasp-pain.org/Education/Content.aspx?ItemNumber=1698 [5] Lolignier, S., Eijkelkamp, N., & Wood, J. N. (2015). Mechanical allodynia. *Pflugers Archiv: European* journal of physiology, 467(1), 133–139. doi:10.1007/s00424-014-1532-0 [6] Simon, A., & Collins, C. (2018). Lifestyle Redesign for chronic pain management: A retrospective clinical efficacy study: A retrospective clinical efficacy study. AJOT. July/August 2017, Volume 71, Number 4. [7] Lagueux, E., Charest, J., Lefrançois-Caron, E., Mauger, M.-E., Mercier, E., Savard, K., & Tousignant-Laflamme, Y. (2012). Modified graded motor imagery for complex regional pain syndrome type 1 of the upper extremity in the acute phase. International Journal of Rehabilitation Research, 35(2), 138–145. doi: 10.1097/mrr.0b013e3283527d29

[8] Moseley, L. G., & Wiech, K. (2009). The effect of tactile discrimination training is enhanced when patients watch the reflected image of their unaffected limb during training. *Pain*, *144*(3), 314–319. doi:

References

[9] Watson, Danielle & Velsher, Mel. (2016). Seeing Relief: Mirror Box Therapy as a Treatment for Chronic Regional Pain Syndrome. *School of Occupational Master's Capstone Projects*. 3.

[10] Lewis, Jenny & McCabe, C.S. (2010). Body Perception Disturbance (BPD) in CRPS. *Practical Pain Management*. Retrieved from

http://eprints.uwe.ac.uk/10851/1/PPM_Apr2010_CRPS_Lewis_McCabe.pdf

[11] Louw, Adriaan., Puentedura, Emilio., Schmidt, Stephen., Zimney, Kory., Podolak, Jessica., ...Marth, Lindsay. (2019). Therapeutic Neuroscience Education I: Teaching People About Pain 2019Lab Manual. *International Spine &*

[12] Harden, R. N., Oaklander, A. L., Burton, A. W., Perez, R. S., Richardson, K., Swan, M., Barthel, J., Costa, B., Graciosa, J. R. and Bruehl, S. (2013), CRPS Diagnostic and Treatment Guidelines. Pain Med, 14: 180-229. doi:10.1111/pme.12033

[13] Allen, R. J. (2006). Physical Agents Used in the Management of Chronic Pain by Physical

Therapists. *Physical Medicine and Rehabilitation Clinics of North America, 17*(2), 315-345. doi:10.1016/j.pmr.2005.12.007

[14] Stanton-Hicks, M. (2010). Plasticity of Complex Regional Pain Syndrome (CRPS) in Children. Pain Medicine, 11(8), 1216–1223. doi: 10.1111/j.1526-4637.2010.00910.x
[15] Sherry, D & Krpcio D. (2011) Amplified Musculoskeletal Pain (AMP): A Guide for Families
[16] He Y, Kim PY. Allodynia. (2019). In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; Available from: https://www.ncbi.nlm.nih.gov/books/NBK537129/

References

[17 Palmero, T., & Law, E. (2015) *Managing your child's chronic pain.* Oxford, New York: Oxford University Press.

[18] International Spine & Pain Institute - Session 1-4

[19] Pollard C (2013) Physiotherapy management of complex regional pain syndrome New Zealand Journal of Physiotherapy 41(2): 65-72.

[20] Moseley GL (2004). Graded motor imagery is effective for long standing complex regional pain syndrome: A randomised controlled trial. Pain 108: 192-198.

[21] Royal College of Physicians (2018) 'Complex Regional Pain Syndrome in adults UK guidelines for diagnosis, referral and management in primary and secondary care, 'RCP London website. May 2012. Available: https:rcplondon.ac.uk/sites/default/files/documents/complex-regional-pain-full-guideline.pdf>

UNIVERSITY OF MICHIGAN

QUESTIONS